

PostgreSQL

How To Migrate From Other
Database Systems To PostgreSQL

Making use of the features of
PostgreSQL – thus making your
application programming easier

Holger@Jakobs.com
FrOSCon 2011

PostgreSQL at a glance

● Other database systems are more
popular, but not more advanced.

● NoSQL databases are no alternative
at all if you need to save structured
data – as opposed to documents.

● PostgreSQL aims to be as close to
the SQL standard as possible.

● Let's see how PostgreSQL can help
you to make application programming
easier and more failsafe.

Database and Application

Database and Application

Frontend may be:
● traditional application

directly accessing
database server
(C, C++, Java, ...)

● web application
(Java, PHP, ...)

● or maybe both?
● or even more?

Database and Application
Conclusion:

If you have – or might develop over time – several
frontends to your database, doing integrity checks
in your application program becomes difficult.

The checks ...
● have to programmed again and again.
● might not all do exactly the same thing.
● will bloat your applications – especially

problematic on mobile platforms.
● won't help while using an interactive tool.

Typical PHP Application

used as pure
data storage

mixture of
application logic,
plausibility and
integrity checks

user interface,
minimal

plausibility
checks

Typical PHP Application

used as pure
data storage

mixture of
application logic,
plausibility and
integrity checks

user interface,
minimal

plausibility
checks

How to do it better?

Typical PHP Application

user interface,
minimal

plausibility
checks

pure application
logic, nothing

else

data storage,
integrity checks
and some logic

"behind the
scenes"

Typical PHP Application

user interface,
minimal

plausibility
checks

pure application
logic, nothing

else

data storage,
integrity checks
and some logic

"behind the
scenes"

Why is this better?

Integrity Checks => Database

Why to put all your integrity checks into the
database:
● Declaring is easier than programming.
● Fast! And race conditions can be avoided.
● Consistent checks for all frontends
● Cannot be bypassed by interactive tools
● Smaller application programs
● Little checks in order to avoid network traffic

remain allowed.

Why Do They Do It?

Why do people use SQL databases as pure
means of saving data instead of making use of all
the goodies in SQL?
● Many have “learnt” SQL by doing using some

inferior system lacking many features.
● Some literature does not point out what is

possible with SQL, because it concentrates on
the application programming language.

● Some may use database frontends for
generating the tables – and they don't offer
more.

● data types and domains
RDBMS do not allow to save data not conforming to
the data type – e. g. saving '2011-02-30' in a date field.

● check constraints
Simple checks using only data from the current record.

● primary keys and unique constraints
They make sure these columns or column groups are
unique, e. g. unique employee id + day.

● foreign keys
They make sure you don't insert data referencing
something nonexistant, e. g. entering an order for a
customer id which has already been deleted.

What does SQL offer regarding
integrity checks?

More helpful things

● Automatically numbering ids avoiding a “race
condition” by using sequences/auto-increment.

● Giving users access only to views instead of
real tables, thus limiting access.

● Doing complex integrity checks using triggers.
● Keeping a history of changes using triggers.
● Multi-user write access is flawless in most

cases – no manual locks necessary!

SQL Data Types For Text

Most important data types include:
● char(max-length)

use for character sequences (strings) of the same
length, e. g. ISBN

● varchar(max-length)
use for character sequences (strings) of variable
length, e. g. names, descriptions

● text
Attention: non-standard

http://plausibolo.de/FrOSCon/Lecture-FrOSCon-2011-Migration-to-PostgreSQL-Examples.odt

SQL Data Types For Numbers

Most important data types include:
● smallint, integer, bigint

2/4/8 bytes in size, positive/negative

● numeric(precision,scale)
up to 1000 digits, precise, slow arithmetic
indispensible for monetary values

● real, double precision
real: 1E-37 to 1E+37, double: 1E-307 to 1E+308
imprecise, fast arithmetic
for measurements, maths, physics

http://plausibolo.de/FrOSCon/Lecture-FrOSCon-2011-Migration-to-PostgreSQL-Examples.odt

SQL Data Types For Dates/Times

Most important data types include:
● date

just a date, without time (not so in Oracle)

● time
just a time, without date, microseconds

● timestamp
date and time, with/without time zone, microseconds

● interval
difference between timestamp values, duration

http://plausibolo.de/FrOSCon/Lecture-FrOSCon-2011-Migration-to-PostgreSQL-Examples.odt

Other SQL Data Types

Other data types include:
● boolean just a bit

● enumerated
user-defined using create type

● geometric types
points, line segments, boxes, paths, polygons, circles

● network address types
inet/cidr (IPv4 and IPv6), macaddr

● UUID, XML types, Arrays, Composite Types

Constraints
Allowing less than the data type would allow:
● not null constraint – disallowing null

values
● check constraint – limit value, based only

on the current record
● create domain – create your own data type

including default value, check and not null
constraints

● foreign key constraint – limit
value based on something unique in
another table

http://plausibolo.de/FrOSCon/Lecture-FrOSCon-2011-Migration-to-PostgreSQL-Examples.odt

1,1 : 0,N Relationship

● An employee can have 0 or more (up to ∞) working hours records.
● A working hours record belongs to exactly one employee record.

employee_id
name

dateofbirth

employee
employee_id

day
arrives
leaves
break

working_hours

1,1 0,∞

emp_id name dateofbirth

1 Anna 1978-04-06

2 Fritz 1983-12-04

3 Berta 1980-11-11

emp_id day arrives leaves break

1 2011-08-16 08:00 17:30 0:30

1 2011-08-17 08:15 18:00 0:45

1 2011-08-18 07:55 16:00 0:45

2 2011-08-02 09:00 18:00 1:00

Remember

● Working hours referring to a nonexistant
employee cannot be entered by mistake.

● Employees with working hours records cannot
be deleted by mistake.

● If an employee id is changed (primary keys
actually should never change), good RDBMS
can change all referring records.

● This is called ON UPDATE CASCADE
● All this happens without any programming, fully

automatically!

But what if ...

... things get more complicated?

You will have to write triggers. There you have to
program, not just declare, right. But still:

Trigger programming has to be done once –
not over and over again for every frontend.

Let's try a really complicated case:
A new working hours record may not be added if
the previous one has not been completed by filling
in the leaves field.

Entering a New Record

emp_id name dateofbirth

1 Anna 1978-04-06

2 Fritz 1983-12-04

3 Berta 1980-11-11

emp_id day arrives leaves break

1 2011-08-16 08:00 17:30 0:30

1 2011-08-17 08:15 18:00 0:45

1 2011-08-18 07:55 0:45

2 2011-08-02 09:00 18:00 1:00

5 1 2011-08-19 08:15 0:00

new record to be inserted
OK or not?

should be rejected,
because this value is still NULL

Entering a New Record

emp_id name dateofbirth

1 Anna 1978-04-06

2 Fritz 1983-12-04

3 Berta 1980-11-11

emp_id day arrives leaves break

1 2011-08-16 08:00 17:30 0:30

1 2011-08-17 08:15 18:00 0:45

1 2011-08-18 07:55 0:45

2 2011-08-02 09:00 18:00 1:00

5 1 2011-08-19 08:15 0:00

new record to be inserted
OK or not?

should be rejected,
because this value is still NULL

How can this rule be enforced

without programming in the

frontend?

Checking this Rule (1)

First a function has to be created:

create function check_left_yesterday() returns trigger as '
 declare lastleft time;
 begin
 select leaves into lastleft from working_hours
 where employee_id=new.employee_id
 and day = (select max(day) from working_hours
 where employee_id=new.employee_id);
 if found and lastleft is null then
 raise exception ''% into table "%": field "leaves" of
 last entry is still NULL.'', TG_OP, TG_RELNAME;
 end if;
 return new;
 end;
' language 'plpgsql';

Checking this Rule (2)
Then a trigger can call this function:

create trigger check_left_yesterday
before insert on working_hours
for each row execute procedure check_left_yesterday();

Let's try it now:

insert into working_hours (employee_id, day, arrives)
 values (1,'2011-08-19', '07:45');
ERROR: INSERT into table "working_hours": field "leaves" of
last entry is still NULL.

update working_hours set leaves = '16:00'
 where employee_id=1 and day='2011-08-18';
UPDATE 1

insert into working_hours (employee_id, day, arrives)
 values (1,'2011-08-19', '07:45');
INSERT 0 1

Is Everything Safe Now?

● Does this trigger make sure that there never is
a missing leaves field?

● Nope! Only entering a new record is rejected if
the last record lacks the leaves value.

● Still old leaves values can be set to NULL by
updating existing records.

● Of course this can be avoided by creating a
trigger for UPDATE.

Using Views

● Not everybody should see everything.
● Create views showing only some data and

grant SELECT for certain users only for these
views.

● Let's try to create a view showing only the
added-up working hours for people.

Showing the accumulated working hours per employee:

create view sum_workinghours as
 select employee_id, name,
 sum(leaves-arrives-break) as hours
 from employee natural join working_hours
 group by employee_id, name;

Let's try it out:

select * from sum_workinghours;
 employee_id | name | hours
-------------+-------+----------
 2 | Fritz | 08:00:00
 1 | Anna | 28:20:00
(2 rows)

View: accumulated working hours

View: accumulated working hours
Showing the accumulated working hours per employee:

create view sum_workinghours as
 select employee_id, name,
 sum(leaves-arrives-break) as hours
 from employee natural join working_hours
 group by employee_id, name;

Let's try it out:

select * from sum_workinghours;
 employee_id | name | hours
-------------+-------+----------
 2 | Fritz | 08:00:00
 1 | Anna | 28:20:00
(2 rows)

Wow!
Wow!

That was easy!

sum up the hours minus the breaks

using both tables in a natural join

and group the results per employee

What's The Point?

What have we seen (maybe learnt) so far?
● You can keep everything regarding your data

and their integrity in the RDBMS.
● Application programming can be freed from

doing integrity checks leading to less cluttered
code.

● Checks are more reliable and faster this way.
● Especially race conditions can be avoided.

How Do I Migrate To PostgreSQL? (1)

● Of course it's best to start a new project right
away with a powerful RDBMS.

● There's a precondition for migrating existing
applications to PostgreSQL: You have to be
able to dump your database into SQL close to
the standard.

● Otherwise, some search/replace or hand
coding is necessary. Here more disadvantages
of your previous database system may show.

● If so, this is not the fault of PostgreSQL.

How Do I Migrate To PostgreSQL? (2)

When you have dumped your old database into
some SQL file, add schema management:
● create schema humanresources

creates a schema (kind of directory) for tables,
sequences, views and so on.

● set search_path to humanresources
puts your subsequently created objects into the
new schema.

● drop schema humanresources
deletes the schema and all objects contained –
in case you want to start over.

What Not To Do ...

Don't use several databases:
● You cannot use objects from several databases

in one statement.
● You cannot enforce foreign key constraints

spanning databases.

Don't use prefixes in table names:
● They are just a lame replacement for standard

schemas

How Do I Migrate To PostgreSQL? (3)

Don't forget to remove all non-standard things
from your file, like for instance:
● table types
● backticks `xx` and square brackets [xx]
● funny column types (like datetime or
varchar2) and names (user is a reserved
word)

Now let's import the definition of schemas, tables,
sequences into PostgreSQL:

$ psql < db_definition.sql

Is PostgreSQL difficult?

● For everybody who as learnt SQL based on the
ANSI standard, it's easy and straightforward.

● It does not mimic the quirks and deviations of
other popular database systems and may seem
awkward for those familiar with those.

● There are not many books. For a reason: The
original documentation is already excellent!

● psql on the command line is great.

● pgAdmin3 as a graphical tool is great as well.

Availablility of PostgreSQL

● It's included in the repositories of most Linux
distributions and BSD.

● Binary packages are available for FreeBSD,
several Linux distributions, Mac OS X, Solaris
and Windows (32 and 64 bit)

● Live CDs and Software appliances:

PostgreSQL Live CD (Fedora and CendOS based)

TurnKey PostgresQL (Ubuntu based)

LAPP appliance and Amazon EC2 image

Thank you
for your time

and your
attention!

Holger@Jakobs.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39

